Improving Robot Motor Learning with Negatively Valenced Reinforcement Signals

نویسندگان

  • Nicolás Navarro
  • Robert J. Lowe
  • Stefan Wermter
چکیده

Both nociception and punishment signals have been used in robotics. However, the potential for using these negatively valenced types of reinforcement learning signals for robot learning has not been exploited in detail yet. Nociceptive signals are primarily used as triggers of preprogrammed action sequences. Punishment signals are typically disembodied, i.e., with no or little relation to the agent-intrinsic limitations, and they are often used to impose behavioral constraints. Here, we provide an alternative approach for nociceptive signals as drivers of learning rather than simple triggers of preprogrammed behavior. Explicitly, we use nociception to expand the state space while we use punishment as a negative reinforcement learning signal. We compare the performance-in terms of task error, the amount of perceived nociception, and length of learned action sequences-of different neural networks imbued with punishment-based reinforcement signals for inverse kinematic learning. We contrast the performance of a version of the neural network that receives nociceptive inputs to that without such a process. Furthermore, we provide evidence that nociception can improve learning-making the algorithm more robust against network initializations-as well as behavioral performance by reducing the task error, perceived nociception, and length of learned action sequences. Moreover, we provide evidence that punishment, at least as typically used within reinforcement learning applications, may be detrimental in all relevant metrics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Clay: Integrating Motor Schemas and Reinforcement Learning 1 Background and Related Work 1.1 Motor Schemas

Clay is an evolutionary architecture for autonomous robots that integrates motor schema-based control and reinforcement learning. Robots utilizing Clay beneet from the real-time performance of motor schemas in continuous and dynamic environments while taking advantage of adaptive reinforcement learning. Clay coordinates assemblages (groups of motor schemas) using embedded reinforcement learning...

متن کامل

Reinforcement Learning for Parameterized Motor Primitives [IJCNN1759]

One of the major challenges in both action generation for robotics and in the understanding of human motor control is to learn the “building blocks of movement generation”, called motor primitives. Motor primitives, as used in this paper, are parameterized control policies such as splines or nonlinear differential equations with desired attractor properties. While a lot of progress has been mad...

متن کامل

Automatic Development from Pixel-level Representation to Action-level Representation in Robot Navigation

0.4pt0pt Many important real-world robotic tasks have high diameter, that is, their solution requires a large number of primitive actions by the robot. For example, they may require navigating to distant locations using primitive motor control commands. In addition, modern robots are endowed with rich, high-dimensional sensory systems, providing measurements of a continuous environment. Reinfor...

متن کامل

Automatic Development from Pixel-level Representation to Action-level Representation

Many important real-world robotic tasks have high diameter, that is, their solution requires a large number of primitive actions by the robot. For example, they may require navigating to distant locations using primitive motor control commands. In addition, modern robots are endowed with rich, high-dimensional sensory systems, providing measurements of a continuous environment. Reinforcement le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017